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Abstract
A theory of orientational relaxation for the inertial rotational Brownian motion
of a linear molecule (rotator in space) is developed in the context of the Langevin
equation method without recourse to the Fokker–Planck equation. The general
term in the time-dependent infinite hierarchy of differential-recurrence relations
for the orientational correlation functions describing the relaxation behaviour of
the system is derived by averaging the corresponding Euler–Langevin equation.
The solution of this hierarchy is obtained in terms of continued fractions. The
correlation times and the spectra of the orientational correlation functions are
calculated for typical values of the model parameters.

PACS numbers: 05.40.Jc, 05.10.Gg, 83.10.Mj

1. Introduction

Models of the rotational Brownian motion are frequently used for the study of molecular
dynamics in liquids in order to compare spectra obtained by various probe techniques such as
dielectric relaxation, the dynamic Kerr effect, infrared absorption, Raman scattering, etc, with
the corresponding theoretical spectra [1–3]. The theoretical treatment of rotational Brownian
motion has hitherto been mainly based on the Fokker–Planck equation [4]. This equation is a
partial differential equation for the time evolution of the orientational distribution function of
a molecule in phase space. The Fokker–Planck equation in the context of a dynamical system,
the motion of which (in the absence of heat) bath is governed by Hamilton’s equations with a
separable and additive Hamiltonian (comprising the sum of the kinetic and potential energies),
is usually known as the Klein–Kramers equation. Integration of the phase space distribution
function with respect to the angular velocities yields the orientational distribution function
in configuration space. The Klein–Kramers equation can be derived by calculating the drift
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and the diffusion coefficients from the underlying inertial Langevin equation governing the
time behaviour of the set of random variables describing the rotational Brownian motion of a
molecule in the fluid. The solution of the Fokker–Planck equation has been usually obtained
by separating the variables which gives rise to an equation of Sturm–Liouville type which
possesses solutions in the form of known functions only in a few specialized cases (just as
in the analogous problem of the solution of the Schrödinger equation in wave mechanics)
or by expanding the distribution function as an appropriate Fourier series in the phase space
variables which yields an infinite hierarchy of linear differential-recurrence equations for the
time-dependent moments (the expectation values of the Fourier coefficients). The infinite
hierarchy can be solved numerically the approach being analogous to matrix mechanics in
quantum theory. A comprehensive discussion of the Fokker–Planck equation method and its
applications to the study of orientational relaxation in fluids is given, e.g., in [1, 3, 5–14].

An alternative approach to the problem has been given by Coffey [15] who derived
the exact infinite hierarchy of differential-recurrence equations for the moments governing
the dynamics by averaging directly [15, 16] the Langevin equation for the simple model
of the inertial rotation of a planar rotator without recourse to the Fokker–Planck equation
(this model has been reconsidered and applied recently to the calculation of the transient
nonlinear response [17]). The key step in applying the method is first to convert by appropriate
transformation the Langevin equation into an equation for the quantity the statistical average
of which is desired, and then to average that equation over its realizations in phase space.
The transformed Langevin equation contains not only the quantity, the average of which is
desired, but also the next higher order average and so on. It is thus the generating equation of
a hierarchy of averages. This eliminates the excessive step in the theory of constructing and
solving the corresponding Fokker–Planck equation entirely. The Langevin equation method
has been further developed by Coffey et al (see, e.g., [18–21]) for the non-inertial rotation in
three dimensions where a number of exact solutions for the complex polarizability, correlation
times, etc, were obtained. We also remark that Coffey [16] and Coffey et al [22] were also able
to treat the inertial Brownian rotation of a linear (needle-like) molecule in space. However, the
first few equations of the hierarchies only were obtained [16] and no straightforward method
of the solution of the hierarchy of moment equations (arising from the transformation and
averaging procedure) governing the relaxation of the system including inertial effects has been
given in [16, 22]. It is the purpose of this paper to show how the general term in the hierarchy of
differential-recurrence equations for inertial rotation in space arises naturally from the vector
Langevin equations defined as Stratonovich stochastic equations [22]. Thus the problem of
constructing and solving the Klein–Kramers equation is bypassed entirely as was accomplished
in [15, 17] for the inertial rotation in a plane. The advantage in computational labour that the
averaging method has over the solution by the Fokker–Planck method is considerable. Neither
the derivation of that equation nor knowledge of the intricate transformations used to effect the
separation of the variables in it, and to solve the resulting simultaneous recurrence relations is
required.

It is apparent from the work described in [16, 18, 21, 22] that problems involving inertial
effects can easily be treated for rotation about a space-fixed axis only. If the axis of rotation
is no longer space-fixed then the separation of variables method of the solution of the Klein–
Kramers equation is rather difficult to use when inertial effects are included [18]. Moreover,
the rotation of a linear molecule in space presents new features mainly arising from the
nonlinear nature of the Euler–Langevin equations, which do not occur in the corresponding
space-fixed axis rotator response. Thus, the solution of the moving axes rotator problem is
necessary for a comprehensive understanding of the role played by inertia in the relaxation
process. The separation of variables method when applied to the needle model in the context
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of the Klein–Kramers equation, first involves the expansion of the angular velocity part of the
phase space distribution function in products of Hermite polynomials in the angular velocity
components. This procedure leads to a set of partial differential-recurrence relations in the
space coordinates and the time for the configuration space distribution function. These may
be solved simultaneously and (after considerable algebra together with a further expansion
in associated Legendre functions) may be converted into a set of simultaneous ordinary
differential-recurrence relations (see, e.g., [6, 14]). Furthermore, considerable mathematical
manipulation is required in order to solve the simultaneous algebraic recurrence relations,
which result from Fourier transformation over time of the ordinary differential-recurrence
relations.

Here the Langevin equation approach proposed in [15, 16, 18, 22] is generalized to treat
comprehensively the inertial effects in the orientational relaxation of an assembly of linear
molecules undergoing rotational Brownian motion in space as this is the simplest model for the
purpose of demonstration of the influence of inertial effects in space rotation. Our approach
is based on the solution of the recurrence relations for the statistical moments in terms of
continued fractions [18, 24]. If the recurrence relation is a three-term one, it is possible
to obtain exact analytical expressions for the Fourier–Laplace transform of the orientational
correlation functions in terms of ordinary continued fractions and for the relaxation times in
terms of known mathematical functions (in some cases). However, in the majority of problems
this situation does not occur because the number of recurring terms in the underlying recurrence
relations is generally greater than 3. Nevertheless, as demonstrated by Risken [23] and then
extensively elaborated upon by Coffey et al [18], it is always possible to reduce a multi-term
scalar recurrence relation to a three-term matrix one (tridiagonal form). Thus the solution
can be given in terms of matrix continued fractions. Here, we shall use this powerful method
for the calculation of the quantities of interest, namely, the orientational correlation functions
and the corresponding relaxation times. Moreover, it is worth mentioning that the algorithms
employed in such an approach are very effective which will allow progress well beyond the
previous methods available for the solution of the problem.

2. Rotational Brownian motion of a thin rod

Let us consider the rotational Brownian motion of a thin rod, or rotator, representing the linear
polar molecule. In the molecular coordinate system oxyz rigidly connected to the rotator, the
angular velocity ω and the angular momentum M of the rotator are defined as [1]

ω = (ωx, ωy, ωz) = (ϑ̇, ϕ̇ sin ϑ, ϕ̇ cos ϑ) (1)

and

M = (Iωx, Iωy, 0) = (I ϑ̇, I ϕ̇ sin ϑ, 0) (2)

where I is the moment of inertia, ϑ and ϕ are the polar and azimuthal angles, respectively. In
the absence of external fields, the rotational Brownian motion of the rotator is governed by the
vector Euler–Langevin equation [1, 18]

d

dt
M(t) + ω(t) × M(t) + ζω(t) = λ(t) (3)

where ζω(t) and λ(t) are the frictional and white noise torques due to the Brownian motion
of the surroundings, respectively. The white noise torque has the following properties:

λj (t) = 0 λj (t)λm(t ′) = 2kT ζ δj,mδ(t − t ′) (j,m = x, y, z) (4)

where k is the Boltzmann constant, T is the temperature, ζ is the friction (drag) coefficient,
δ(t) is the Dirac-delta function, δj,m is Kronecker’s delta and the overbar means the statistical
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average over an ensemble of rotators that all start at the instant t with the same sharp values of
the angular velocity and the orientation [5, 15]. The λj (t) must also satisfy Isserlis’s theorem
[17] for centred Gaussian random variables, namely, for 2n λ:

λ1λ2 . . . λ2n = λ1(t1)λ2(t2) . . . λ2n(t2n) =
∑ ∏

ki<kj

λki

(
tki

)
λkj

(
tkj

)
(5)

where the sum is taken over all distinct products of expectation value pairs, each of which is
formed by selecting n pairs of time intervals from 2n time points and for 2n+1 λ:

λ1λ2 . . . λ2n+1 = λ1(t1)λ2(t2) . . . λ2n(t2n+1) = 0. (6)

We proceed by noting equation (3), rewritten for the vector components in the molecular
frame as [4]

I ω̇x(t) + ζωx(t) − Iω2
y(t) cot ϑ(t) = λx(t) (7)

I ω̇y(t) + ζωy(t) + Iωx(t)ωy(t) cot ϑ(t) = λy(t). (8)

Equations (7) and (8) combined with the definition of the angular velocity components in
equation (1), namely, ϑ̇ = ωx, ϕ̇ = ωy/ sin ϑ , constitute a system of nonlinear stochastic
differential equations. In order to proceed we shall use the Stratonovich definition [23] of the
average of these equations because that is the mathematical idealization of the orientational
relaxation process. Thus, it is unnecessary to transform the Langevin equations (7) and (8) to
Itô equations (e.g. [3]). Moreover, one can apply the usual rules of calculus [5, 15, 24].

We now introduce the functions

f l,m
n (t) = Pm

l [cos ϑ(t)]sm
n [ωx(t), ωy(t)] (0 � m � l; l, n = 0, 1, 2, . . .) (9)

where Pm
l (z) are the associated Legendre functions [25] and the functions sm

n (ωx, ωy) are given
in terms of finite series of products of Hermite polynomials Hn(z) [25] in the components
ωx, ωy of the angular velocity as

s2m+M
n (ωx, ωy) =

n∑
q=0

r2m+M(n, q)

q!(n − q)!
H2n−2q+M(ηωx)H2q(ηωy). (10)

Here M = 0 or 1, η = √
I/(2kT ), and the coefficients of the series r2m+M(n, q) are determined

from the orthogonal properties of sm
n (ωx, ωy) by the recurrence relations

r2m(n, q) =
(

n − q +
1

2

)(
1 − 2q + 1

2m − 1

)
r2m−1(n, q) + (n − q)

2q + 1

2m − 1
r2m−1(n, q + 1)

(11)

r2m+1(n, q) =
(

1 +
q

m

)
r2m(n, q) − q

m
r2m(n, q − 1) (12)

with r0(n, q) = r1(n, q) = 1. One has, for example, r2(n, q) = n − 2q , r3(n, q) = n − 4q ,
r4(n, q) = n(n − 1) − 8q(n − q), etc. The orthogonality properties of sm

n (ωx, ωy), namely,∫ ∞

−∞

∫ ∞

−∞
sm
n (ωx, ωy)s

m′
n′ (ωx, ωy) e−η2(ω2

x+ω2
y) dωx dωy ∼ δn,n′δm,m′

result from the orthogonality of the Hermite polynomials and equations (11) and (12).
We desire an infinite hierarchy of differential-recurrenceequations for the averaged values

of f l,m
n (t) over its realizations in phase space (here configuration, which is angular velocity

space), which are analogues of the observables in quantum mechanics. By appropriate
transformation of the variables in equations (7) and (8) and subsequent use of Isserlis’s
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theorem as applied in appendices B and C of chapter 10 of [18], this is accomplished by
evaluating

d

dt
f

l,m
n (t) = lim

τ→0

Pm
l [cos ϑ(t + τ )]sm

n [ωx(t + τ ), ωy(t + τ )] − Pm
l (cos ϑ)sm

n (ωx, ωy)

τ
(13)

where

ωx(t + τ ) = ωx − ζ

I

∫ t+τ

t

ωx(t
′) dt ′ +

∫ t+τ

t

ω2
y(t

′) cot ϑ(t ′) dt ′ +
1

I

∫ t+τ

t

λx(t
′) dt ′ (14)

ωy(t + τ ) = ωy − ζ

I

∫ t+τ

t

ωy(t
′) dt ′ −

∫ t+τ

t

ωx(t
′)ωy(t

′) cot ϑ(t ′) dt ′ +
1

I

∫ t+τ

t

λy(t
′) dt ′

(15)

are integral forms of equations (7) and (8). We remark here that the time τ is of such short
duration that the angular velocities do not significantly alter during τ and neither does any
external conservative torque. Nevertheless τ is supposed to be sufficiently long so that the
chance that the rapidly fluctuating stochastic torque λ(t) takes on a given value at time t + τ

is independent of the value, which the torque possessed at time t. We further remark that
ϑ,ωx and ωy and ϑ(t), ωx(t) and ωy(t) in equation (13) have different meanings, namely,
ϑ(t), ωx(t) and ωy(t) are stochastic variables (processes) while ϑ,ωx and ωy are the sharp
values at time t (recall that the time τ is infinitesimally small). Instead of using different
symbols for the two quantities, we have distinguished the sharp values at time t from the
stochastic variables by deleting the time argument as in [4, 18].

Thus, evaluating the right-hand side of equation (13) explicitly, one can derive the

differential-recurrence relations for the moments f
l,m
n (the derivation is given in appendix A):

η
d

dt
f

l,0
n = −2nβ ′f l,0

n +
1

2
f

l,1
n + 2f

l,1
n−1 (16)

η
d

dt
f

l,2m−M
n = −(2n + M)β ′f l,2m−M

n + f
l,2m+1−M
n−1+M +

1

4
f

l,2m+1−M
n+M − (l + 2m − M)(l − 2m

+ 1 + M)

[
1

4
(n − m + 1 + M)f

l,2m−1−M
n+M + (n + m)f

l,2m−1−M
n−1+M

]
(17)

where m � 1 and M = 0 or 1, and β ′ = ζη/I . All the quantities f
l,m
n in equations (16) and

(17) are functions of the sharp values ϑ,ωx and ωy which are themselves random variables
with the probability density function W(ϑ,ωx , ωy, t). Therefore, in order to obtain equations
for the moments, which govern the relaxation dynamics of the system, we must also average
equation (16) over W [18]. However, if the system under consideration is in equilibrium (as
in the present problem), all such averages are either constant or zero indicating that one must
first construct from equations (16) and (17) a set of differential-recurrence equations for the
appropriate equilibrium correlation functions (CFs) [18, 20].

As far as the majority of applications is concerned, the quantities of interest are the
orientational equilibrium CFs Cl(t) for the Legendre polynomials Pl defined as (in a physical
system these are the observables rather than the sharp averages)

Cl(t) = 〈Pl[cos ϑ(0)]Pl[cos ϑ(t)]〉. (18)

These characterize the orientational relaxation in liquids (the angular brackets denote the
equilibrium ensemble averages). Having determined the correlation function Cl(t), one can
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also evaluate the corresponding orientational correlation time τ l defined as the area under the
normalized correlation function Cl(t)/Cl(0) [3], namely,

τl = 1

Cl(0)

∫ ∞

0
Cl(t) dt . (19)

By way of illustration, we shall obtain below exact analytical solutions in terms of ordinary
continued fractions for the spectra of the first, C1(t) = 〈P1[cos ϑ(0)]P1[cos ϑ(t)]〉, and
the second, C2(t) = 〈P2[cos ϑ(0)]P2[cos ϑ(t)]〉, order equilibrium orientational correlation
functions (these CFs are used for the interpretation of dielectric and infrared absorption and
Raman and Rayleigh scattering measurements) [2]. We also propose a general method for the
evaluation of the spectra of higher order CFs in terms of matrix continued fractions.

3. Evaluation of the CF spectrum C̃1(ω)

One can readily derive differential-recurrence equations for the equilibrium CF for the first

Legendre polynomial (l = 1), namely, c1,m
n (t) = 〈cos ϑ(0)f

1,m
n (t)〉 (so that c

1,0
0 (t) ≡ C1(t))

by multiplying equations (16) and (17) by cos ϑ(0) and by averaging the equations so
obtained over the equilibrium distribution function W0 at the instant t = 0. Using the Laplace
transformation, these equations can be written as a system of algebraic recurrence relations,
namely,

(ηs + 2nβ ′)c̃1,0
n (s) − 2c̃

1,1
n−1(s) − c̃1,1

n (s)/2 = δn,0ηc
1,0
0 (0) (20)

[ηs + (2n + 1)β ′]c̃1,1
n (s) + 2(n + 1)c̃1,0

n (s) + (n + 1)c̃
1,0
n+1(s)/2 = 0 (21)

where f̃ (s) = L{f (t)} = ∫∞
0 e−st f (t) dt . Here, we have taken into account that all the c1,0

n (0)

vanish with the exception of n = 0, namely, c1,0
0 (0) = 1/3 (this follows from the orthogonality

property of the associated Legendre functions [25]).
The solution of equations (20) and (21) can be obtained as a scalar continued fraction

as follows. First of all, equations (20) and (21) can be rearranged as a three-term recurrence
equation, namely,

[ηs − qn(s)]c̃1,0
n (s) − q+

n (s)c̃
1,0
n+1(s) − q−

n (s)c̃
1,0
n−1(s) = δn,0ηc

1,0
0 (0) (22)

where

qn(s) = − n

(2n − 1)β ′ + ηs
− 2nβ ′ − (n + 1)

(2n + 1)β ′ + ηs
(23)

q+
n (s) = − (n + 1)/4

(2n + 1)β ′ + ηs
(24)

q−
n (s) = − 4n

(2n − 1)β ′ + ηs
. (25)

Equation (22) may be solved using the continued fraction

c̃
1,0
0 (s)

c
1,0
0 (0)

= η

/
ηs − q0(s) − q+

0 (s)q−
1 (s)

ηs − q1(s) − q+
1 (s)q−

2 (s)

ηs−. . .
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or

c̃1,0
n (iω)

c
1,0
0 (0)

= η

/
iωη +

1

β ′ + iωη
− 1

(β ′ + iωη)2

× 1

1

β ′ + iωη
+ 2β ′ + iωη +

2

3β ′ + iωη
−
(

2

3β ′ + iωη

)2

× · · ·


 (26)

On using the equality

n

A
− n2

A2

1
n
A

+ B
= n

A + n
B

.

Equation (26) can be further rearranged to yield

c̃1,0
n (iω)

c
1,0
0 (0)

= η

iωη +
1

β ′ + iωη +
1

2β ′ + iωη +
2

3β ′ + iωη +
2

4β ′ + iωη +
3

5β ′ + iωη + · · ·

. (27)

Having determined the CF spectrum C̃1(ω) = c̃
1,0
0 (iω), one can evaluate the orientational

correlation time τ 1 defined by equation (19) for n = 1, namely,

τ1 = 1

C1(0)

∫ ∞

0
C1(t) dt = c̃

1,0
0 (0)

c
1,0
0 (0)

(28)

and the normalized complex susceptibility χ̂(ω) = χ̂ ′(ω) − iχ̂ ′′(ω). This is given by linear
response theory as [21]

χ̂(ω) = χ(ω)

χ ′(0)
= 1 − iω

c̃
1,0
0 (iω)

c
1,0
0 (0)

(29)

where χ ′(0) = Nµ2/3kT is the static susceptibility, N is the number of dipoles per unit
volume and µ is the dipole moment of a molecule. Equations (27) and (29) coincide with the
result of Sack [6] for the complex dielectric susceptibility.

In the high damping limit (β ′ 	 1), the inertia-corrected Debye equation for the complex
susceptibility [18] is recovered from equations (27)–(29), namely,

χ̂(ω) = 1

1 + iωτD − η2ω2
(30)

along with the following Taylor series expansion for τ 1:

τ1 = τD

[
1 + γ − 2

3γ 2 + 2
3γ 3 − 11

15γ 4 + 5
6γ 5 + O(γ 6)

]
. (31)

Here τD = ηβ ′ = ζ/2kT is the Debye relaxation time and γ = 1/(2β ′2) is the inertial (Sack’s
[6]) parameter. Equation (30) will be a good approximation to the continued fraction solution
for γ � 0.05 [6]. The small value of γ (or, equivalently, the large value of β ′) indicates that
equilibrium of the angular velocities is almost attained before a dipole has time to change
its direction appreciably. For larger values of γ the higher order terms in the continued
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fractions became progressively more important, but the classical model is then no longer a
good approximation in view of discrete spacing of rotational levels and a quantum-mechanical
treatment must be used [5]. Equation (31) is in complete agreement with the results of [1, 9].
The high damping limit is the case of greatest interest in the explanation of dielectric relaxation
data of molecular liquids. For example, for liquid chloroform at 25 ◦C [18]

I = 2.7 × 10−38 g cm−2 τD = 6.4 × 10−12 s ζ/I = 1.9 × 1013 s−1

leading to γ ∼ 4 × 10−3.

4. Evaluation of the CF spectrum C̃2(ω)

In like manner, one may obtain the system of recurrence equations for the Laplace
transforms of the corresponding CFs for the second Legendre polynomial (l = 2), namely,

c2,m
n (t) = 〈

P2[cos ϑ(0)]f 2,m
n (t)

〉
so that c

2,0
0 (t) ≡ C2(t). By multiplying equations (16)

and (17) by P2[cos ϑ(0)] and by averaging the equations so obtained over the equilibrium
distribution function W0 at the instant t = 0, we have from equations (16) and (17) for l = 2

(ηs + 2nβ ′)c̃2,0
n (s) − 1

2 c̃2,1
n (s) − 2c̃

2,1
n−1(s) = ηc

2,0
0 (0)δn,0 (32)

[sη + (2n + 1)β ′]c̃2,1
n (s) + 3

2 (n + 1)c̃
2,0
n+1(s) + 6(n + 1)c̃2,0

n (s) − c̃2,2
n (s) − 1

4 c̃
2,2
n+1(s) = 0 (33)

(sη + 2nβ ′)c̃2,2
n (s) + nc̃2,1

n (s) + 4(n + 1)c̃
2,1
n−1(s) = 0. (34)

Here, we note that all the c2,m
n (0) vanish save n = 0 and m = 0, namely, c

2,0
0 (0) = 1/5.

Just as the first-order response, equations (32)–(34) can be rearranged as a three-term
recurrence equation for c̃2,1

n (s). Thus, the exact solution for c̃
2,1
0 (s) in terms of an infinite

continued fraction combined with the relation

sc̃
2,0
0 (s) = c

2,0
0 (0) +

1

2η
c̃

2,1
0 (s)

(that is, equation (32) at n = 0) yields

c̃
2,0
0 (s)

c
2,0
0 (0)

= η

ηs +
3

ηs + β ′ +
5

ηs + 2β ′ − b0

ηs + a1 − b1

ηs + a2 − b2

ηs + a3−. . .

(35)

where

an = (2n + 1)β ′ +
4n + 3

2nβ ′ + ηs
+

4n + 5

2(n + 1)β ′ + ηs

and

bn = 16(n + 1)(n + 2)

[2(n + 1)β ′ + ηs]2
.

Here the function

c̃
2,0
0 (iω) = C̃2(ω) (36)

is the spectrum of the autocorrelation function of the second-order Legendre polynomial which
pertains to the Raman and Rayleigh scattering as well as to the dynamic Kerr-effect [2, 3].
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Having determined the spectrum of the correlation function C̃2(ω), one may evaluate the
orientational correlation time τ 2, namely,

τ2 = c̃
2,0
0 (0)

c
2,0
0 (0)

. (37)

In the high damping limit (β ′ 	 1), equations (35) and (37) yield the Taylor series expansion
for τ 2:

τ2 = τD

3

[
1 + 5γ − 32

3
γ 2 +

368

9
γ 3 − 23 464

135
γ 4 +

1 549 628

2025
γ 5 + O(γ 6)

]
. (38)

Equation (38) is in complete agreement with the results of [1, 9].

5. Evaluation of the CF spectrum C̃l(ω) for an arbitrary l

In order to proceed, we must derive differential-recurrence equations for the equilibrium CF

cl,m
n (t) = 〈

Pl[cos ϑ(0)]f 2,m
n (t)

〉
so that c

l,0
0 (t) ≡ Cl(t). This is accomplished by multiplying

equations (16) and (17) by Pl[cos ϑ(0)] and averaging the equations so obtained over the
equilibrium distribution function W0 at the instant t = 0. In order to evaluate the lth order
equilibrium orientation correlation function Cl(t), the l + 1 independent equations (16) and
(17) must be considered. Hence, it is simpler to represent the solution in terms of matrix
continued fractions. In order to solve the hierarchy of moment equations so obtained, we
introduce a column vector Cn (t) comprising l + 1 elements:

Cn(t) =




c
l,0
n−1(t)

c
l,1
n−1(t)

...

c
l,l
n−1(t)


 .

Then the hierarchy of equations for cl,m
n (t) can be transformed into the matrix three-term

differential-recurrence equation

η
d

dt
Cn(t) = Q−

n Cn−1(t) + QnCn(t) + Q+
nCn+1(t) (n = 1, 2, 3, . . . ) (39)

where C0(t) = 0 and Qn, Q+
n and Q−

n are (l + 1) × (l + 1) square matrices with elements to be
determined from equations (16) and (17). The initial conditions are given by

C1(0) =




Cl(0)

0
...

0


 and Cn(0) = 0 for all n � 2

where Cl(0) = (2l + 1)−1. On taking the Laplace transform of equation (39), we have the
matrix three-term recurrence relation

(ηsI − Qn)C̃n(s) − Q+
nC̃n+1(s) − Q−

n C̃n−1(s) = δn,1ηC1(0) (n � 1). (40)

The exact solution for the Laplace transform C̃1(s) is then given by the matrix continued
fraction [17, 23]

C̃1(s) = η
I

ηsI − Q1 − Q+
1

I

ηsI − Q2 − Q+
2

I

ηsI − Q3
. . .

Q−
3

Q−
2

C1(0). (41)
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Figure 1. 3D plot of log10{Re[C̃1(ω)/C1(0)]} as a function of log10(ωη) and log10(β
′).

2

1

0

1

log10 −2

−1

0

1

2

−

−

( )ωη

log10( ′ )β

−4

−2

0

2

log10{Re[C2
∼ ( )/C2(0)]}ω

Figure 2. 3D plot of log10{Re[C̃2(ω)/C2(0)]} as a function of log10(ωη) and log10(β
′).

where I is the unit matrix and the fraction lines denote matrix inversion. Explicit solutions
for l = 1 and l = 2 are given in appendix B (both (ordinary and matrix) continued fraction
solutions give the same results and can be used for an independent check of calculations).

The 3D plots of log10{Re[C̃1(ω)/C1(0)]} and log10{Re[C̃2(ω)/C2(0)]} versus log10(ωη)

and log10(β
′) are shown in figures 1 and 2. Two limiting cases may be used to check the

numerical calculations. In the low damping limit (β ′ → 0), the spectra C̃l(ω) reduce to those
of the free rotation model (β ′ ≡ 0) [26], namely,

C̃FR
l (ω)

Cl(0)
= 1

iω

{[
dl

0,0

(π

2

)]2
− 2

l∑
m=1

[
dl

0,m

(π

2

)]2
(ωη/m)2 e−(ηω/m)2

E1[(−ηω/m)2]

}
(42)

where

E1(z) =
∫ ∞

z

exp(−t)

t
dt

is the first-order exponential integral function [25] and the dl
M,M ′(ϑ) are functions familiar in

the theory of angular momentum; explicit equations for dl
M,M ′(ϑ) are given, e.g., in [27, p 78].

For l = 1 and l = 2, equation (42) yields

C̃FR
1 (ω) = iωη2 e−η2ω2

E1(−η2ω2) (43)
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and

C̃FR
2 (ω) = − i

4ω
+ i

3

16
ωη2 e−η2ω2/4E1(−η2ω2/4). (44)

In the opposite (high damping) limit, β ′ → ∞, the form of the spectrum C̃l(ω) becomes
Lorentzian (see figures 1 and 2) and coincides with that predicted by the Debye model of
noninertial rotational diffusion [3], namely,

C̃D
l (ω)

Cl(0)
= τD

l

1 + iωτD
l

(45)

where τD
l = 2τD

l(l+1)
is the orientational correlation time for the Debye model [3].

6. Discussion

On using the Langevin equation method, we have obtained exact analytical solutions (in terms
of ordinary continued fractions) for the one-sided Fourier transforms of the first, C1(t), and the
second, C2(t), order equilibrium orientational correlation functions for the inertial Brownian
motion of linear molecule freely rotating in space. Moreover, we have proposed a general
method for the calculation of higher order correlation functions Cl(t) for any l in terms of
matrix continued fractions. The same method may also be applied to the rotating sphere and
symmetric top models, the only difference being that it is more tedious to evaluate the Hermite
polynomial averages as they now contain ωz.

The method of solution of orientational problems, which we have proposed, is quite
general because it is based on the concept of the equation of motion of an observable which
in turn is based on the dynamical (Langevin) theory [28] of the Brownian motion. The
attractive feature of the dynamical method is that it allows one to compute directly from the
dynamical equations of motion the spectra of the equilibrium CFs C̃l(ω) for any values of γ

and ω, taking account of the effect of molecular inertia on orientational relaxation in liquids.
The distinct advantage that the dynamical (Langevin) method has over the Fokker–Planck
equation approach is that it avoids both the derivation of that equation for the distribution
function W(ϑ, ωx, ωy, t) of linear molecules in phase space,which for the problem in question
is [1, 6]

∂W

∂t
+ ωx

∂W

∂ϑ
+ ωy cot ϑ

(
ωy

∂W

∂ωx

− ωx

∂W

∂ωy

)
= ζ

I

[
∂

∂ωx

(
ωxW +

kBT

I

∂W

∂ωx

)

+
∂

∂ωy

(
2ωyW +

kBT

I cos2 ϑ

∂W

∂ωy

)]
(46)

and also the complex mathematical manipulations associated with the separation of variables
methods of solution of that equation, which combine to obscure the physics underlying the
problem.

As far as comparison with experimental data is concerned, the Langevin–Fokker–Planck
model is suitable only for the explanation of the rotational motion of small molecules (such as
CO, N2O, CF4, and so on) in liquids [3, 11]. Here, the model reasonably describes experimental
data on infrared absorption, Raman scattering, nuclear magnetic relaxation, etc (see, e.g., [3, 9,
11], where a detailed comparison with experiments is given); however, it is not applicable [2]
to liquids composed of larger molecules, where the rotational motion is more hindered and has
a librational character. The failure of the Langevin–Fokker–Planck model as well as all other
inertia-corrected Debye type models [3] to account for the high-frequency molecular librations
in neat liquids, even though they explain the return to transparency at high frequencies, is to
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be expected [2] in view of the assumption made in the theory that all electrical interactions
between dipoles may be neglected. The Langevin equation approach is also of interest when
extended to other models of orientational relaxation such as the itinerant oscillator [29], which
are concerned with the rotational Brownian motion in external potentials [18, 24], which
simulate intermolecular interactions. These models simultaneously exhibit both resonance
and relaxation behaviour, which heuristically explains both the low-frequency (relaxational)
and high-frequency (librational) behaviour of dipole systems. We remark that such models
(e.g., the itinerant oscillator) have been previously treated for rotation about a space-fixed axis
only. It is evident that the Langevin equation treatment, as described, in principle affords a
simple way of writing down the recurrence equations for any of the three-dimensional models.
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Appendix A. Derivation of differential-recurrence equations for fl,k
n

In order to derive the hierarchy of equations for average values of f l,k
n (t) we first note that

d

dt
f

l,m
n (t) = Pm

l

d

dt
sm
n + sm

n

d

dt
Pm

l .

For m = 0, we can evaluate the two terms on the right-hand side of the above equation as
follows:

s0
n[ωx(t), ωy(t)]

d

dt
Pl[ cos ϑ(t)] = ωx(t)s0

n[ωx(t), ωy(t)]P 1
l [ cos ϑ(t)]

= 1

2η
P 1

l [ cos ϑ(t)]
n∑

q=0

1

q!(n − q)!

[
Hx

2n−2q+1(t) + 4(n − q)Hx
2n−2q−1(t)

]
H

y

2q(t)

= 1

2η

[
s1
n(ωx, ωy) + 4s1

n−1(ωx, ωy)
]
P 1

l (cos ϑ) (A1)

and

Pl[cos ϑ(t)]
d

dt
s0
n[ωx(t), ωy(t)]

= 4ηPl[cos ϑ(t)]
n∑

q=0

1

q!(n− q)!

[
(n− q)Hx

2n−2q−1(t)H
y

2q(t)ω̇x(t) + qHx
2n−2q(t)H

y

2q−1(t)ω̇y(t)
]

= −2n
β ′

η
Pl[cos ϑ(t)]

n∑
q=0

1

q!(n − q)!
Hx

2n−2q(t)H
y

2q(t)

= −2n
β ′

η
s0
n(ωx, ωy)Pl(cos ϑ) (A2)

where H
j
n (t) ≡ Hn[ηωj(t)] ( j = x, y) and ω̇x(t) and ω̇y(t) are given by equations (7) and (8).

In order to simplify equations (A1) and (A2), we have used the identities [25, 27]
∂

∂ϑ
Pl(cos ϑ) = P 1

l (cos ϑ) (A3)
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d

dx
Hn(x) = 2nHn−1(x) (A4)

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (A5)

and the relations from Stratonovich calculus

λx(t)F [ϑ(t), ϕ(t), ωy (t)]Hn[ηωx(t)] = ζn

η
F(ϑ, ϕ, ωy)Hn−1(ηωx) (A6)

λy(t)G[ϑ(t), ϕ(t), ωx (t)]Hn[ηωy(t)] = ζn

η
G[(ϑ, ϕ, ωx)Hn−1(ηωy) (A7)

where F and G are arbitrary functions. Equations (A6) and (A7) follow from Isserlis’s theorem
and are given in appendices A–C of [18] (see also [16], where particular simple cases of these
equations have been obtained, namely, equations (25), (26), (A14), (A16) and (A19) of that
paper). Combining equations (A1) and (A2), one can obtain equation (16)

In like manner, we have for m � 1 and M = 0, 1

s2m+M
n [ωx(t), ωy(t)]

d

dt
P 2m+M

l [ cos ϑ(t)] = ωx(t)s
2m+M
n [ωx(t), ωy(t)]

∂

∂ϑ
P 2m+M

l [ cos ϑ(t)]

= 1

4η

[
P 2m+M+1

l (cos ϑ) − (l + 2m + M)(l − 2m + M − 1)P 2m+M−1
l (cos ϑ)

]

×
n∑

q=0

r2m+M(n, q)

q!(n − q)!

[
Hx

2n−2q+M+1 + 2(2n − 2q + M)Hx
2n−2q+M−1

]
H

y

2q (A8)

and

P 2m+M
l [ cos ϑ(t)]

d

dt
s2m+M
n [ωx(t), ωy(t)]

= −β ′

η
(2n + M)P 2m+M

l (cos ϑ)s2m+M
n [ωx, ωy] − 1

4(2m + M)η

×
[
P 2m+M+1

l (cos ϑ) + (l + 2m + M)(l − 2m + M − 1)P 2m+M−1
l (cos ϑ)

]

×
n∑

q=0

(2n − 2q + M)r2m+M(n, q) − 2(n − q)r2m+M(n, q + 1)

q!(n − q)!

× Hx
2n−2q+M−1

[
H

y

2q+2 + 2(2q + 1)H
y

2q

]
. (A9)

Here equations (A4)–(A7) and the following relations of the associated Legendre functions
have been used [27]:

2
∂

∂ϑ
Pm

l = Pm+1
l − (l + m)(l − m + 1)Pm−1

l (m � 1)

2m cotϑPm
l = −Pm+1

l − (l + m)(l − m + 1)Pm−1
l (m � 1)

(2l + 1) sin ϑPm
l = Pm+1

l−1 − Pm+1
l+1

= (l − m + 1)(l − m + 2)Pm−1
l+1 − (l + m − 1)(l + m)Pm−1

l−1

Noting equations (A8) and (A9), we have

η
d

dt
f

l,2m−1
n = −(2n + 1)β ′f l,2m−1

n + f
l,2m
n + d

2m−1,+1
n,+1 f

l,2m
n+1 − (l + 2m − 1)(l − 2m + 2)

×
[
d

2m−1,−1
n,+1 f

l,2m−2
n+1 + d

2m−1,−1
n,0 f

l,2m−2
n

]
(A10)
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and

η
d

dt
f

l,2m
n = −2nβ ′f l,2m

n +
1

4
f

l,2m+1
n + d

2m,+1
n,−1 f

l,2m+1
n−1

−(l + 2m)(l − 2m + 1)
[
d

2m,−1
n,0 f

l,2m−1
n + d

2m,−1
n,−1 f

l,2m−1
n−1

]
(A11)

where

d
2m,−1
n,0 = 1

4

[(
1 − q

m

) r2m(n, q)

r2m−1(n, q)
+

q

m

r2m(n, q − 1)

r2m−1(n, q)

]
= n − m + 1

4

d
2m,{±1}
n,−1 =

(
1 ∓ 2q + 1

2m

)
r2m(n, q)

r2m±1(n − 1, q)
± 2q + 1

2m

r2m(n, q + 1)

r2m±1(n − 1, q)
=
{

1
n + m

}

d
2m−1,−1
n,0 =

(
n − q +

1

2

)(
1 +

2q + 1

2m − 1

)
r2m−1(n, q)

r2m−2(n, q)
− (n − q)(2q + 1)

2m − 1

r2m−1(n, q + 1)

r2m−2(n, q)

= n + m

d
2m−1,{±1}
n,+1 = (n − q + 1)

4

(
1 ± 2q

2m − 1

)
r2m−1(n, q)

r2m−1±1(n + 1, q)

∓ (2n − 2q + 3)q

4(2m − 1)

r2m−1(n, q − 1)

r2m−1±1(n + 1, q)
= 1

4

{
1

n − m + 2

}
.

Thus equations (A10) and (A11) reduce to equation (17).

Appendix B. Matrix continued fraction solutions of equations (20)–(21) and (32)–(34)

For l = 1, the scalar recurrence relations (20) and (21) may be recast in the form of the matrix
recurrence relations (40), where

C̃n(s) =
(

c̃
1,0
n−1(s)

c̃
1,1
n−1(s)

)
Q−

n =
(

0 2
0 0

)

Qn =
(−2(n − 1)β ′ 1/2

−2n −(2n − 1)β ′

)
Q+

n =
(

0 0
−n/2 0

)
and

C1(0) =
(

C1(0)

0

)
.

For l = 2, the scalar recurrence equations (32)–(34) can also be recast in the form of the
matrix three-term recurrence (40), where this time

C̃n(s) =




c̃
2,0
n−1(s)

c̃
2,1
n−1(s)

c̃
2,2
n−1(s)


 C1(0) =


C2(0)

0
0


 Q−

n =

0 2 0

0 0 0
0 −4n 0




Q+
n =


 0 0 0

−3n/2 0 1/4
0 0 0


 Qn =


−2β ′(n − 1) 1/2 0

−6n −β ′(2n − 1) 1
0 −(n − 1) −2β ′(n − 1)


 .

In both cases (l = 1 and l = 2), the matrix continued fraction solutions are rendered by
equations (41). The calculation shows that the matrix continued fraction solutions rendered
by equations (41) and the ordinary continued fraction solutions (27) and (35) coincide.
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[11] Lévi G, Marsault J P, Marsault-Hérail F and McClung R E D 1980 J. Chem. Phys. 73 2435
[12] Morita A 1982 J. Chem. Phys. 76 3198
[13] Lee D H and McClung R E D 1987 Chem. Phys. 112 23
[14] Kalmykov Yu P and Quinn K P 1991 J. Chem. Phys. 95 9142
[15] Coffey W T 1990 J. Chem. Phys. 93 724
[16] Coffey W T 1991 J. Chem. Phys. 95 2026
[17] Coffey W T, Kalmykov Yu P and Titov S V 2001 J. Chem. Phys. 115 9895
[18] Coffey W T, Kalmykov Yu P and Waldron J T 1996 The Langevin Equation (Singapore: World Scientific)
[19] Kalmykov Yu P, Titov S V and Coffey W T 1998 Phys. Rev. B 58 3267
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